
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2005; 47:1353–1359
Published online 29 December 2004 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.839

Finite element simulation of three-dimensional free-surface
�ow problems with dynamic contact lines

M. A. Walkley1∗;†, P. H. Gaskell2, P. K. Jimack1, M. A. Kelmanson3

and J. L. Summers2

1School of Computing; University of Leeds; Leeds; LS2 9JT; U.K.
2School of Mechanical Engineering; University of Leeds; Leeds; LS2 9JT; U.K.
3Department of Applied Mathematics; University of Leeds; Leeds; LS2 9JT; U.K.

SUMMARY

An arbitrary Lagrangian–Eulerian (ALE) �nite element method is described for the solution of three-
dimensional free-surface �ow problems. The focus of this work is on extending the algorithm to include
a dynamic contact line model allowing the �uid free surface, in the steady case, to form a prespeci�ed
static contact angle with a solid boundary and, in the transient case, to move along the solid bound-
ary. This widens the applicability of the algorithm to important industrial applications such as forced
spreading of �uids and gravity-driven �ow on inclined surfaces. Copyright ? 2004 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Free-surface �ow problems occur in a wide variety of scienti�c and engineering applications.
Examples include phase-change problems, coating �ows, the spreading of viscous �uids and
the motion of drops or bubbles. The primary interest of this paper is the development of a
numerical technique for the simulation of time-dependent free-surface �ows in three dimen-
sions, which represents one of the most important practical computational challenges for this
class of problem. The requirement for time dependence is apparent in almost all applications
since understanding the evolution and stability of free surfaces provides one of the major in-
centives for their mathematical and computational study. Furthermore, fully three-dimensional
simulations are required in order to capture all of the physically important features of most
free-surface �ows. For example, the forced spreading of a �uid droplet on a chemically or
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topologically patterned surface, a problem with signi�cant practical interest in the context of
coating �ows [1], is necessarily both time-dependent and three-dimensional. In recent years
there has been a signi�cant interest in the computational study of such �ows using ALE �nite
element methods, e.g. References [2, 3], and it is this approach that is pursued here.
The numerical technique described in this paper is an extension of the three-dimensional

algorithm introduced in Reference [4]. The principal aim of the paper is to provide a three-
dimensional incompressible free-surface �ow solver based upon the use of implicitly sta-
ble elements (the so-called Taylor–Hood element); to represent the three-dimensional free
surface using piecewise quadratics for optimal accuracy with the chosen elements (this is
of particular signi�cance when surface-tension e�ects are dominant), and; to implement the
three-dimensional moving-mesh algorithm in conjunction with a discrete mesh regeneration
procedure (to allow for larger geometry changes to occur than is otherwise possible). Partic-
ular attention is paid to the modelling of the contact line, where the �uid free surface meets
a solid surface. The previous model is extended so that for steady �ows a given static con-
tact angle between these two surfaces can be achieved. For time-dependent �ows a dynamic
contact angle model is implemented which allows motion of the free surface along a solid
boundary.
The complete method is demonstrated through a range of examples. The necessity to in-

clude a static contact angle at a contact line is illustrated through modelling the gravity-driven
spreading of a �uid droplet and the formation of a meniscus in a cylindrical container. The
motion of a �uid droplet on an inclined plane applies the model to a problem with a dy-
namic contact line. The paper concludes with a brief discussion of the strengths and current
limitations of the work.

2. MATHEMATICAL MODEL

The problem to be modelled can be described by the three-dimensional Stokes equations for
velocity �eld u and pressure p, written in the following non-dimensional form:

0=∇ · �+ Stf ; 0=∇ · u (1)

where �= − pI+∇u+∇uT is the stress tensor, f is the exterior force and St is the Stokes
number. The �uid domain � is assumed to be simply connected and is bounded by either a
�uid free surface �f or a solid wall �w. The contour de�ned by the interface of these two
surfaces is termed the contact line �c. On the solid boundary �w a no-slip condition is applied
and, at the free surface �f the following kinematic condition and stress condition are applied:

nf · (u − ẋf)=0; nf · �= − nfpext +
1
Ca

(∇S · nf
)
nf (2)

In (2) nf represents the outward normal to the free surface whose location is given by xf,
the dot above a variable denotes its time derivative, u represents the �uid velocity at a point
on the free surface, pext is the external pressure, which may be taken as zero for simplicity,
∇S =(I − nfnf) · ∇ is the surface gradient operator and Ca is the capillary number which is
inversely proportional to surface tension (which is assumed to be constant over the entire free
surface).
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Figure 1. Geometrical description of the contact line: (a) 3d model; and
(b) 2d section in the plane of nw and nf.

In previous work by the authors [4] it was assumed that the contact line �c was �xed and
the no-slip condition was applied there. In e�ect there was no restriction on the angle formed
between the �uid free surface and the solid boundary. This is appropriate for some �ows, for
example the development of a �uid droplet from a pipette, but clearly there are cases, such as
the modelling of a �uid meniscus, where it is desirable to specify a static contact angle, �s,
on this boundary. The value of �s is determined a priori by properties of both the �uid and
the solid surface and can be given as a physical parameter of the problem. In a more general
framework the contact line is allowed to move forming a dynamic contact angle, �, between
the �uid and solid surfaces. Figure 1 depicts the geometry of the contact line on which
the model is based. In practice nf and nw (the outward normal to the solid boundary) are
computed from the current geometry whilst nc, the tangent to the solid surface in the plane of
nf and nw, de�nes locally the direction in which the free surface is allowed to move. Strictly,
this problem cannot be uniquely de�ned within the Stokes �ow framework since the contact
line is both part of the solid boundary, which is subject to the no-slip condition, and the �uid
boundary, which is subject to the kinematic condition. Detailed mathematical analyses of this
problem and alternative mathematical models appear in the literature, e.g. References [5, 6].
In general these models may be expressed in the form

nw · nf= cos(�)=f(�s; ẋc) (3)

with the precise de�nition of f(�s; ẋc) determined by the selected model. Equation (3) may
be used to compute the local speed of the contact line ẋc in the direction nc. The speci�c
model used in this paper is taken from Reference [7] and has previously been applied in three
dimensions by Baer et al. [2]:

f(�s; ẋc)= cos(�s)− cT Ca ẋc (4)

The constant cT in this model is arbitrary and an appropriate value should be determined
empirically to scale the contact line speed relative to the dynamic contact angle. It is straight-
forward to include this general model of the contact line in the current algorithm, as is
described in the following section.
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3. NUMERICAL MODEL

The system of equations described in the previous section represent a time-dependent, non-
linear �ow in which the spatial domain evolves with the problem. The computational algorithm
used here has been described in detail in Reference [4]. In previous work, e.g. Reference [2],
this problem has been solved in a fully coupled fashion, however here the �ow solution is
decoupled from the boundary motion at each time step in the following manner. First, solve
the steady Stokes equations to compute the pressure and velocity �eld. Second, update the free
surface position �f using the computed velocity. The contact line model (3), which prescribes
the motion of the mesh nodes on �c, is incorporated at this stage. Finally, adapt the interior
mesh through a pseudo-elastic solid motion of the mesh points, subject to displacements
enforced by the free-surface displacement.
Other distinguishing features of the model presented here, compared to previous work, are:

the use of an a priori LBB stable Taylor–Hood �nite element method for the Stokes problem,
using isoparametric quadratic tetrahedral elements; an isoparametric quadratic triangular model
of the free surface, allowing an accurate representation of the free-surface curvature and hence
the associated surface tension forces; the use of both continuous adaptivity, in the form of
mesh movement, and discrete remeshing, allowing large deformations of the �uid domain.
Mesh movement is driven by the deformation of the �uid free surface due to the kinematic

boundary condition. The interior mesh is adapted at each time step by a pseudo-linear elastic
displacement. This linear elastic problem is discretized using a linear �nite element method
and solved with a Gauss–Seidel iterative technique [4]. In general two iterations are su�cient
to produce a satisfactory evolution of the interior mesh. However, mesh movement is only
e�ective if the �uid volume does not change signi�cantly, the domain does not distort signi�-
cantly and the free surface mesh quality is maintained. In cases where these conditions do not
apply it is also necessary to discretely remesh the whole domain. The quality of the existing
mesh is monitored through the integral of the curvature on the mesh edges: I�=

∫
s |�| ds,

where � is the curvature [8], which can be computed directly as a piecewise constant on
the locally quadratic edge. This measure indicates regions in which surface curvature is large
relative to the local mesh resolution.

4. COMPUTATIONAL EXAMPLES

Examples are given of the algorithm applied to problems in which the solution evolves to a
steady state, and also to a problem with a dynamic contact line whose motion is governed by
our choice of contact line model. In all cases the initial meshing of the computational domain
and the discrete remeshing stages are performed using the NETGEN software [9].
The �rst example comprises an initially hemispherical droplet, of radius 1, at Stokes number

1 and capillary number 1 on a solid, plane surface with gravity acting perpendicular to the
plane. The initial mesh has 396 nodes and 179 elements. The computation is impulsively
started from a dynamic contact angle �=90◦ and the droplet returns to its equilibrium position
which is determined by the speci�ed static contact angle �s. Figures 2(a)–(b) show two
examples in which �s is set to 60 and 120◦, respectively. In each case the spatial domain
is remeshed once during the computation, triggered by the edge-curvature measure exceeding
a given tolerance. In case (a) the �nal number of nodes and elements are 886 and 412 and
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Figure 2. Computation to steady state with a speci�ed static contact angle: (a) Droplet
spreading Ca=1, St=1, �s=60◦; (b) Droplet spreading Ca=1, St=1, �s=120◦;

and (c) Meniscus formation Ca=1, St=1, �s=60◦.

Figure 3. Computation with a dynamic contact line: (a) t=0:1; (b) t=10:0; and (c) t=20:0.

in case (b) 530 and 229, respectively. Note that in both cases the transient solution to the
correct steady-state is computed and for case (a) the maximum droplet height is found to
decay in proportion to t−0:21, which is consistent with experimental and theoretical results
reported elsewhere (e.g. Reference [10] and references therein).
In the second example �uid is con�ned by a cylindrical solid boundary of radius 0:5 with

Stokes number 1, capillary number 1 and gravity acting along the axis of the cylinder. The
initial mesh has 895 nodes and 450 elements. The computation is impulsively started from
a dynamic contact angle of �=90◦ and evolves to a steady state with a speci�ed static
contact angle of 60◦ as shown in Figure 2(c). Discrete remeshing is not required here as the
edge-curvature measure does not exceed the given tolerance.
The �nal example applies the algorithm to the gravity-driven motion of a �uid droplet on

a plane inclined at 20◦ to the horizontal, with gravity acting vertically. The droplet is initially
hemispherical with radius 1, the Stokes number and capillary number are both 1, implying
a balance between capillary and gravitational e�ects, and the static contact angle �s=90◦.
The initial mesh has 396 nodes and 179 elements. The problem is started impulsively by
rotating the gravitational body force to simulate the instantaneous inclination of the plane.
Figure 3 shows the evolution of the droplet as it slides down the plane. The curvature of
the surface increases at the front of the droplet and correspondingly decreases near the tail
but the horizontal pro�le of the droplet remains approximately circular, probably due to the
viscous nature of the Stokes �ow modelled here. If the Stokes number is increased by a factor
of 10 (or the capillary number correspondingly decreased) we see a similar �ow evolution
but with an enhanced steepening of the advancing edge as expected. Baer et al. [2] solved
a similar problem, but at a non-zero Reynolds number, and reported signi�cant evolution of
the droplet shape, although their results are performed without remeshing and su�er from
a lack of resolution at later times. Figure 4(a) shows the evolution of the edge-curvature
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Figure 4. Statistics of the adaptive mesh procedure (a) Edge curvature measure; and (b) Fluid volume.

measure in time and the remeshing stages that are performed with a curvature threshold set
to 0:6. The growth during the computation is attributed to the redistribution of free surface
nodes from the front of the advancing droplet towards the rear, increasing the discrete edge
curvature at the front of the droplet. Figure 4(b) depicts the evolution of the �uid volume
during the computation. The overall mass loss represents approximately 4% of the initial
�uid volume after 20 000 time steps. It is clear that almost all of this loss is attributed to
the discrete remeshing stages, due to the interpolation of new mesh nodes onto the original
piecewise-quadratic surface, and further work is required to minimise this source of mass loss.

5. DISCUSSION

An adaptive ALE �nite element method for the solution of three-dimensional moving-boundary
problems in the presence of dynamic contact lines has been described. By the use of isopara-
metric quadratic tetrahedral Taylor–Hood elements we are able to represent the geometry of
the free surface, and hence the curvature-dependent surface-tension forces, to a higher de-
gree of accuracy than has been possible with previously published three-dimensional models.
In particular, when considering the implementation at the contact line, the model can accu-
rately represent the required contact angles and surface curvature at a solid boundary. The
mathematical model of the contact line is quite general but also rather simplistic. Alternative
models [5, 6] are possible within the framework of Equation (3) and will be investigated and
contrasted. This model can also be calibrated and validated by comparison with laboratory
experiments. Further validation of the whole computational model will be obtained by com-
parison with numerical models describing thin-�lm evolution on topologically and chemically
patterned surfaces [1, 11]. Potential future applications of the model include the industrially
important process of spin coating.
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